between 2030 and 2050 [1] (ii) C ₅ H ₁₁ OH + 7½ O ₂ → 5CO ₂ + 6H ₂ O [1] (b) any three from: same general formula same functional group same chemical properties same methods of preparation accept consecutive members differ by CH ₂ [3] (c) same molecular formula different structures / different structural formulae [1] (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH (d) number of moles of glucose = 72/180 = 0.4 maximum number of moles ethanol = 0.8 maximum mass of ethanol, M _i = 46g, 0.8 × 46 = 36.8 g or 180 (g) produces 2 × 46 = 92 (g) (1) (72 (g) produces) 72/180 × 92 (1) = 36.8 (g) (1) (ii) crack (petroleum or alkane) react with water / hydrate (ethene to make ethanol) (iii) conditions for cracking (temperature) 450to 800 °C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300 °C / (pressure) 60 atmospheres /	(a	(i)	CH ₃ –CH ₂ –CH ₂ –OH NOT : C ₃ H ₈ O	[1]					
(b) any three from: same general formula same functional group same chemical properties same methods of preparation accept consecutive members differ by CH ₂ (c) same molecular formula different structures / different structural formulae (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH (d) number of moles of glucose = 72/180 = 0.4 maximum number of moles ethanol = 0.8 maximum mass of ethanol, M _r = 46g, 0.8 × 46 = 36.8 g or 180 (g) produces 2 × 46 = 92 (g) (1) (72 (g) produces) 72/180 × 92 (1) = 36.8 (g) (1) (ii) crack (petroleum or alkane) react with water / hydrate (ethene to make ethanol) conditions for cracking (temperature) 450to 800 °C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide or conditions for hydration (temperature) 300 °C / (pressure) 60 atmospheres / (catalyst) phosphoric acid				[1]					
same general formula same functional group same chemical properties same methods of preparation accept consecutive members differ by CH ₂ [3] (c) same molecular formula [1] different structures / different structural formulae [1] (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH (d) number of moles of glucose = 72/180 = 0.4 [1] maximum number of moles ethanol = 0.8 [1] maximum mass of ethanol, M _r = 46g, 0.8 × 46 = 36.8g [1] or 180 (g) produces 2 × 46 = 92 (g) (1) (72 (g) produces) 72/180 × 92 (1) = 36.8 (g) (1) (ii) crack (petroleum or alkane) [1] conditions for cracking (temperature) 450to 800 °C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / broken pot / chromium oxide or conditions for hydration (temperature) 300 °C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]		(ii)	$C_5H_{11}OH + 7\frac{1}{2}O_2 \rightarrow 5CO_2 + 6H_2O$	[1					
different structures / different structural formulae (ii) CH ₃ -CH ₂ -CH(OH)-CH ₃ / (CH ₃) ₃ C-OH (d) number of moles of glucose = 72/180 = 0.4 [1] maximum number of moles ethanol = 0.8 [1] maximum mass of ethanol, M _r = 46g, 0.8 × 46 = 36.8g or 180 (g) produces 2 × 46 = 92 (g) (1) (72 (g) produces) 72/180 × 92 (1) = 36.8 (g) (1) (ii) crack (petroleum or alkane) [1] react with water / hydrate (ethene to make ethanol) [1] conditions for cracking (temperature) 450to 800°C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300°C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]	(b)	san san san	ame general formula ame functional group ame chemical properties ame methods of preparation						
(d) number of moles of glucose = 72/180 = 0.4 [1] maximum number of moles ethanol = 0.8 [1] maximum mass of ethanol, M_r = 46 g, 0.8 × 46 = 36.8 g [1 or 180 (g) produces 2 × 46 = 92 (g) (1) (72 (g) produces) 72/180 × 92 (1) = 36.8 (g) (1) (ii) crack (petroleum or alkane) [1] react with water / hydrate (ethene to make ethanol) [1] conditions for cracking (temperature) 450 to 800 °C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300 °C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]	(c)		different structures / different structural formulae	[1] [1]					
maximum number of moles ethanol = 0.8 maximum mass of ethanol, $M_r = 46\mathrm{g}$, $0.8 \times 46 = 36.8\mathrm{g}$ [1] or $180\mathrm{(g)}$ produces $2 \times 46 = 92\mathrm{(g)}$ (1) $(72\mathrm{(g)}$ produces) $72/180 \times 92$ (1) $= 36.8\mathrm{(g)}$ (1) (ii) crack (petroleum or alkane) [1] conditions for cracking (temperature) 450 to 800° C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300° C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]		(ii)	$CH_3-CH_2-CH(OH)-CH_3 / (CH_3)_3C-OH$						
react with water / hydrate (ethene to make ethanol) conditions for cracking (temperature) 450to 800°C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300°C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]	(d)	1	maximum number of moles ethanol = 0.8 maximum mass of ethanol, $M_r = 46 \mathrm{g}$, $0.8 \times 46 = 36.8 \mathrm{g}$ or $180 \mathrm{(g)}$ produces $2 \times 46 = 92 \mathrm{(g)}$ (1) $(72 \mathrm{(g)})$ produces) $72/180 \times 92$ (1)	[1] [1] [1					
(temperature) 450to 800°C / (catalyst) zeolites / aluminosilicates / silica / aluminium oxide / alumina / china / broken pot / chromium oxide or conditions for hydration (temperature) 300°C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]		(ii)		[1] [1]					
(temperature) 300 °C / (pressure) 60 atmospheres / (catalyst) phosphoric acid [1]			(temperature) 450to 800 °C / (catalyst) zeolites / aluminosilicates / silica / aluoxide / alumina / china / broken pot / chromium oxide or	minium					
[Total: 15]			(temperature) 300 °C / (pressure) 60 atmospheres /	[1]					
			[Тс	otal: 15]					

1

(a	(i)	 correct word equation (carbon dioxide and water) Accept correct symbol equation 		
	(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add barium ions COND white precipitate NOT lead(II) compounds	[1] [1]	
	(iii)	low pH or universal indicator turns red(aq) pH 3 or less	[1]	
(b)		$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]	[2]	
	(ii)	unpleasant smell or it is poisonous or when burnt forms acid rain or f dioxide or forms sulphuric acid NOT it is a pollutant	orms sulphur [1]	
	(iii)	2H to 1S COND 8e around sulphur atom 2e per hydrogen atom THREE correct TWO from above [1] Ionic structure = [0]	[2]	
(c)		vanadium oxide ${f or}$ vanadium(V) oxide ${f or}$ vanadium pentoxide or V_2O_5 Must be correct oxidation state if one given	[1]	
	(ii)	400 to 500° C	[1]	
	(iii)	add to (concentrated) sulphuric acid NOT dilute COND (upon sulphuric acid) above then add water	[1] [1]	
(d)	mol mol	es of one mole of $CaSO_4 = 136$ es of $CaSO_4$ in $79.1g = 0.58$ accept 0.6 es of H_2O in $20.9 g = 1.16$ accept 1.2 aseq $x = 2$	[1] [1] [1]	
			TOTAL = 16	

2

3	(a)	(i)	40	[1]
			80 or 40	[1]
			1	[1]
		(ii)	particles have more energy or moving faster	[1]
			collide more frequently	
			or collide with more energy	[1]
		(iii)	greater surface area	[1]
		(iv)	flour mills or coal mines or metal powders	[1]
			or fireworks or gunpowder	
	(b)	(i)	collect and measure volume of oxygen	[1]
	` '	` /	or mass or count bubbles	
			time	[1]
		(ii)	measure rate in different light levels and comment	[1]
			accept if dark no reaction	
	(c)	(i)	+6O ₂	[2]
	(0)	(1)	not balanced that is just O ₂ ONLY [1]	(2)
		(ii)	linkageO	[1]
		()	chain	[1]
			minimum to be accepted	(٠)